Social interactions are pervasive in human life with varying forms of interpersonal coordination emerging and spanning different modalities (e.g. behaviors, speech/language, and neurophysiology). However, during social interactions, as in any dynamical system, patterns of coordination form and dissipate at different scales. Historically, researchers have used aggregate measures to capture coordination over time. While those measures (e.g. mean relative phase, cross-correlation, coherence) have provided a wealth of information about coordination in social settings, some evidence suggests that multiscale coordination may change over the time course of a typical empirical observation. To address this gap, we demonstrate an underutilized method, windowed multiscale synchrony, that moves beyond quantifying aggregate measures of coordination by focusing on how the relative strength of coordination changes over time and the scales that comprise social interaction. This method involves using a wavelet transform to decompose time series into component frequencies (i.e. scales), preserving temporal information and then quantifying phase synchronization at each of these scales. We apply this method to both simulated and empirical interpersonal physiological and neuromechanical data. We anticipate that demonstrating this method will stimulate new insights on the mechanisms and functions of synchrony in interpersonal contexts using neurophysiological and behavioral measures.